产品中心
详细信息
DRS11B
DRS11B全卷积神经网络 FCN 可以说是深度学习在图像语义分割任务上的开创性工作,出自 UC Berkeley 的 Trevor Darrell 组,发表于计算机视觉领域会议 CVPR 2015,并荣获best paper honorable mention。
FCN 的思想很直观,即直接进行像素级别端到端(end-to-end)的语义分割,它可以基于主流的深度卷积神经网络模型(CNN)来实现。正所谓‘全卷积神经网络‘,在FCN中,传统的全连接层 fc6 和 fc7 均是由卷积层实现,而后的 fc8 层则被替代为一个 21 通道(channel)的 1x1 卷积层,作为网络的终输出。之所以有 21 个通道是因为 PASCAL VOC 的数据中包含 21 个类别(20个object类别和一个「background」类别)。下图为 FCN 的网络结构,若原图为 H×W×3,在经过若干堆叠的卷积和池化层操作后可以得到原图对应的响应张量(Activation tensor)
DRS11B