产品中心
详细信息
A06B-6096-H116
A06B-6096-H116这部分作者讨论了调整不确定性分布以匹配误差分布的问题。采用KL散度作为衡量二者之间差异的度量,但直接小化KL散度需要两个分布的归纳公式。为此作者使用直方图来表示分布,同时采用软直方图使其可微分。对于每个批次训练,基于误差值的统计量创建一个直方图。作者对独立的不确定性采用相同的直方图参数,并使用反比例权重的softmax函数来计算每个误差值或不确定性贡献的直方图值。该直方图的KL损失用于网络的训练。
SEDNet是一个包括视差估计和不确定性估计子网络的网络体系结构。其中视差估计子网络采用GwcNet,GwcNet子网络使用类似ResNet的特征提取器从图像中提取特征,生成代价体积,并使用soft-argmax运算符为像素分配视差。视差预测器的输出模块在不同分辨率下生成K个视差图。不确定性估计子网络学习预测每个像素的观测噪声标量的对数误差。为了计算不确定性图像,作者提出了使用像素对差分向量(PDV)的多分辨率视差预测的新方法。视差估计器输出的视差图首先进行上采样处理,然后进行成对差分以形成PVD。其中,PVD表示像素对之间的视差差异。
A06B-6096-H116